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1 | INTRODUCTION

Heliobiology, a branch of biophysics that studies how
changes in solar activity impact terrestrial organisms,
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Abstract

Background: Building on findings that linked higher levels of sunspot
(SS) activity with a range of health and adverse birth outcomes, we sought to
understand how SS activity over a 17-year time period may be correlated with
the occurrence of birth defects.

Methods: Data from the Texas Birth Defects Registry, vital events from the
Texas Center for Health Statistics, and mean monthly numbers of sunspots from
the National Oceanic and Atmospheric Administration were utilized. Poisson
regression was used to calculate crude/adjusted prevalence ratios (cPRs/aPRs)
and 95% confidence intervals for three quartiles (Q) of increasing SS activity
(compared to a referent of low activity) and 44 birth defects (31 non-cardiac;
13 cardiac) with estimated dates of conception from 1998 to 2016.

Results: We found moderately protective aPRs (range: 0.60-0.89) in a little over half
of the case groups examined in our quartiles of higher SS activity (19 non-cardiac;
6 cardiac), after adjusting for maternal age, race/ethnicity, and education. Particu-
larly protective aPRs in the highest SS quartiles (Q3—4) were noted for: anophthal-
mia, cataract, gastroschisis, trisomy 18, ventricular septal defects, atrial septal defects,
and pulmonary valve atresia or stenosis. Conversely, modestly elevated aPRs were
noted for two defect groups (agenesis, aplasia, and hypoplasia of the lung and micro-
cephaly [Q2-3]). Following an additional adjustment of year of conception, results
remained similar although many of the estimates were attenuated.

Conclusion: The seemingly protective associations between increasing SS
activity may be an artifact of increasing spontaneous abortions that occur fol-
lowing conception during these periods of heightened SS activity.

KEYWORDS
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was founded by Soviet physicist, A. L. Chizhevsky, in the
early 20th century. Chizhevsky reported how cyclic varia-
tions in solar radiation were found to influence epi-
demics, epizootics, and exacerbations of nervous and
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mental illnesses (Chizhevsky, 1976). In recent years,
periods of both high and low geomagnetic activity from
the sunspot cycle (a roughly 11-year cycle) have been
associated with myocardial infarction (Cornélissen
et al., 2002; Gurfinkel' et al., 1995; Zilli Vieira
et al., 2019), blood pressure (Ghione et al., 1998; Wang
et al., 2021), suicide (Stoupel et al., 1995), depression
(Kay, 1994), and sudden infant death syndrome (SIDS)
(Goldwater & Oberg, 2021; O'Connor & Persinger, 1997).
Lifespan also appears to be affected. In a recent study uti-
lizing Norwegian data from 1676 to 1878, the authors
found that individuals born during solar ‘maximums’
lived, on average, shorter lives (by ~5 years) compared to
those born during solar minimums (Skjerve et al., 2015).
This study follows an earlier analysis by Lowell and
Davis (2010) who examined ~58 million death records
from the US National Center for Health Statistics (1979-
2005) and found that individuals conceived in solar maxi-
mum peak years lived approximately two fewer years
than those conceived during solar minimum years
(Lowell & Davis, 2010).

Although a few proposed mechanisms for these associ-
ations in living organisms have been explored, namely:
alterations in vitamin D levels and the melatonin pathway
(Burch et al., 1999; Weydahl et al., 2001), disruptions in
normal calcium ion homeostasis (Blackman et al., 1990;
Cleary, 1993), and field-induced changes in free radicals
within the body (Cleary, 1993; Sienkiewicz et al., 1993;
Sobel et al., 1995), there are many gaps in our understand-
ing of these phenomena. Changes in solar activity induce
both magnetic and electromagnetic changes around the
earth, for instance, and are known to impact 24-h circa-
dian rhythms—operating primarily through melatonin
mediated pathways (Krylov, 2017). Further, diminished
folate levels (associated with an array of birth defects; Safi
et al, 2012), have also been associated with increasing
levels of solar UV radiation (UV-R).

Apart from a limited number of studies on a few
selected adverse infant outcomes, little work has exam-
ined geomagnetic field variations (GMFVs) attributed to
the sunspot cycle and the impact on infant outcomes. A
study by Halpern et al. (1995), for instance, found a trend
towards an excess incidence of chromosomal abnormali-
ties in infants born during solar maximum versus mini-
mum periods in an Israeli population (2.15% vs. 1.8%)
(although results were not statistically significant
[Halpern et al., 1995]). More recently, Juckett (2009)
found correlations between the solar cycle and both birth
defects and cancer across large birth cohorts spanning
180 years (from 1820 to 2000). Similarly, Belisheva et al.
(2012) found associations between heightened periods of
solar activity, increasing cosmic ray intensity, and later
congenital malformations.

~  Prevention

While previous work has suggested that cosmic radia-
tion events produced by the Sun may produce adverse
biological effects on Earth, other investigators have
argued that the ionizing radiation produced by these
solar events is insufficient to produce congenital malfor-
mations under the current paradigm of ionizing radiation
(Overholt et al., 2015). Further, some work has found
that a few selected infant outcomes are positively
impacted by early pregnancy sun exposure. Merlob et al.
(1989) for instance, found that infants born during sun-
spot maximums were generally heavier and longer in
length than those born during solar minimums, and
more recently, a study by Megaw et al. (2021) found a
protective association between first trimester sun expo-
sure on gestational length. How the influence of these
varying levels of background radiation over the course of
the solar cycle may ultimately drive a cascade of later bio-
logical events during pregnancy is not well understood
and little explored.

In light of these gaps, we sought to better understand
the potential impacts of sunspot (SS) activity on a range
of birth defects utilizing a spectrum approach. Drawing
on data from the Texas Birth Defects Registry (TBDR), a
large population-based registry, we examined the associa-
tion between solar maximum and minimum periods, col-
lected from publicly available sunspot data available
from the National Oceanic and Atmospheric Administra-
tion (NOAA) website over the years 1998-2016 and the
occurrence of 44 unique birth defects routinely collected
by the TBDR. This is the first study, to our knowledge, to
examine solar activity and a wide array of defects using
an ecological study design. Better understanding how the
internal dynamics of our sun impact biological outcomes
over time, such as birth defects, may result in improved
models for projected birth prevalence, an improved
understanding of temporal trends in birth defects, and
indications as to the underlying etiology of various
malformations.

2 | MATERIALS AND METHODS

The TBDR, established in 1993, is an active statewide sur-
veillance system which collects an array of infant and
maternal characteristics as well as defect diagnoses. The
TBDR is also routinely linked to state vital event data
(collected by the Texas Department of State Health Ser-
vices [DSHS], Center for Health Statistics [CHS]), such as
births and fetal death data, providing useful information
on maternal residence and other supplemental demo-
graphic information. This study utilized data on infants
and fetuses delivered to women residing in Texas from
1999 (the first year the TBDR covered the entire state of
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Texas) to 2016 (the most recent year with complete
cleaned data available from the Registry at the time of
this study). Infants and fetuses with one of 44 identified
structural or chromosomal birth defects—including all
live births, fetal deaths, and elective terminations—were
included. Cases that are not listed as having a definite
diagnosis were excluded—which comprise 4% of all diag-
noses in the registry.

2.1 | Exposure assessment

This analysis utilized an ecological research design by
examining the mean numbers of sunspots (MSS) occur-
ring during the first trimester (assessed as 1 month prior
to conception through the third month of pregnancy) cat-
egorized as follows: MSS = 0-24th percentile were
assigned to quartile 1 (Q1, ref—minimum sunspot activ-
ity); MSS = 25th-49th percentile (Q2); MSS = 50th-74th
percentile (Q3); and MSS = 75th-100th percentile (Q4—
maximum sunspot activity). Sunspot numbers were
obtained from the National Oceanic and Atmospheric
Administration (NOAA) {American Sunspot Numbers
(SSN)}, US Department of Commerce for the years 1998-
2016. Observations utilized by NOAA included observa-

Association of Variable Star Observers (AAVSO)—which
only includes high quality observations combined into
the ‘American Relative Number of Sunspot Numbers’
(RA) per instructions outlined in Shapley (1949). Data is
publicly available via the following website: (https://
www.ngdc.noaa.gov/stp/solar/ssndata.html). Formed in
1807, NOAA provides a variety of public data—from
weather forecasting used by the National Weather Ser-
vices to monitoring space weather and other Earth sys-
tems of national and global importance—and was
utilized as a secondary data source for this project.

For purposes of this study, we included estimated
dates of conception occurring between 1998 and 2016
(see Figure 1). To calculate estimated dates of conception
(DOC), we followed an established protocol currently
used by the TBDR including a combination of estimates
of last reported menstrual period (LMP) and clinical esti-
mates of gestational age at delivery when LMP was
missing.

2.2 | Outcome assessment

As noted above, 44 unique birth defects were selected for
evaluation using the first four digits of the birth defect
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FIGURE 1 Mean sunspot numbers by month and year, NOAA (1998-2016). First trimester mean sunspots (calculated from 1 month

pre-conception through first 3 months of pregnancy): Q1 (0 to <24th percentile) = 7.53; Q2 (25th-49th percentile) = 34.33; Q3 (50th-74th
percentile) = 59.41; and Q4 (75th-100th percentile) = 105.05; overall average sunspot numbers across entire time period examined = 53.32;
sunspot range = 0.68-147.13. NOAA, The National Oceanic and Atmospheric Administration.
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TABLE 1 Selected birth defects by singleton cases (TBDR, TABLE 1 (Continued)
1999-2016). . n
Birth defect n
. a
Birth defect n Tricuspid valve atresia or stenosis 1173
Non-cardiac Ebstein anomaly 482
Anencephaly 1570 Aortic valve stenosis 1611
Spina bifida, without anencephaly 2495 Hypoplastic left heart syndrome 1490
Encephalocele 604 Patent ductus arteriosus 40,297
Hydrocephaly, without spina bifida 4891 @oarctationlofithelaorta 3371
Microcephaly, severe (head circumference < 3rd 2915 . . )
. Abbreviation: TBDR, Texas Birth Defects Registry.
percentile)

#Exclusions include: multifetal births (n = 30,501,~5%), birth defects with
Holoprosencephaly 699 non-definitive diagnosis codes (n = 19,265,~3%), and births missing date of
conception information (n = 1402, <1%), or sunspot number (n = 2504,

Anophthalmia 191 : .
<1%) (Note: sunspot data not available for April 2007 from NOAA).
Microphthalmia 1826 PCoding for ‘agenesis, aplasia, or hypoplasia of the lung’ excludes cases of
Cataract 1257 pulmonary hypoplasia or hypoplastic lungs caused by a diaphragmatic
hernia.
Anotia or microtia 2242
Choanal atresia or stenosis 822
Agenesis, aplasia, or hypoplasia of the lung? 1992 Classification of Disease 9th Revision (ICD-9) groups. All
) . births with dates of conception occurring between 1998
Cleft palate alone (without cleft lip) 3938 P . g . .
it 1 N hout cleft ol and 2016 were selected for analysis (including 13 cardiac
A . 1 .
Cleft lip with or without cleft palate 7168 and 31 non-cardiac defects) (see Table 1).
Tracheoesophageal fistula/esophageal atresia 1393
Pyloric stenosis 11,205
Stenosis or atresia of the small intestine 2187 2.3 | Covariates included

Stenosis or atresia of large intestine, rectum, or anal 3471
canal Covariate information was obtained from birth and fetal

death certificates. The following factors (below) were

Hirschsprung disease 948
. . chosen for our multi-variable analyses because of their
Biliary atresia 475 o . . . . .
] ) association with a wide range of birth defects in the sci-
Hypospadias (cases and births among males) 20,127 S .. .
entific literature and low numbers of missing categories
Renal agenesis or dysgenesis 3950 within our selected data repositories: Maternal age [cal-
Reduction defects of the upper limbs 2706 culated from date of delivery of the index child minus
Reduction defects of the lower limbs 1268 date of mother's birth (10-19, 20-24, 25-29, 30-34, 35-39,
Craniosynostosis 3465 40+)]; maternal race/ethnicity [White non-Hispanic,
Diaphragmatic hernia 1847 Black non-Hispanic, Other non-Hispanic, and Hispanic];
and maternal education [<high school, high school,
Omphalocele 1377 K
>high school].
Gastroschisis 3525
Trisomy 21 (Down syndrome) 9057
Trisomy 13 (Patau syndrome) 791 2.4 | Statistical analyses
Trisomy 18 (Edwards syndrome) 1663
Cardiac Each of the 44 unique birth defects selected for this study
were examined with respect to the first trimester during
Common truncus 508 . .
T o o th | - each of the assigned mean sunspot quartiles (Q2-4 vs. Q1
ransposition of the great vessels [referent]) as outlined at the beginning of this
Usineliegy of fll: el section (see Section 2.1) using Poisson regression.
Ventricular septal defect 38,382 Denominator data to calculate birth prevalence was
Atrial septal defect 42,743 obtained from the Texas Department of State Health Ser-
Atrioventricular septal defect (endocardial cushion 2865 vices (DSHS) Center for Health Statistics. After excluding
defect) multifetal births (associated with an array of birth defects
Pulmonary valve atresia or stenosis 6169 [Tang et al., 2006]), both crude and adjusted prevalence
) ratios (cPRs/aPRs) and 95% confidence intervals (95%
(Continues)
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Cls) were calculated with all adjusted analyses control-
ling for maternal age, race/ethnicity, and education.

In addition to the covariates above, we also conducted
a subanalysis examining the impact of the inclusion of
year of conception as a continuous variable in our models
to adjust for time varying impacts of increasing birth
defects over time (often attributable to improved methods
of diagnosis).

Birth defects and birth certificate data were stored
and analyzed using SAS® (v.9.4). To protect confidential-
ity, all data cells with less than five subjects were sup-
pressed. All co-authors with data contact signed
Confidentiality Agreements for the TBDR and Center for
Health Statistics (CHS). Additionally, this study was
approved by the Texas DSHS Institutional Review Board
(IRB) and the University of Houston IRB.

3 | RESULTS

Total case groups ranged from n = 191 (anophthalmia)
to n = 42,743 (atrial septal defects) (see Table 1). When
examining our primary covariates by total births
(n = 6,652,309), the majority of mothers in our popula-
tion were 20-29 years old (~54%), Hispanic (~49%), and
had more than a high school education (~44%) (see
Table 2).

3.1 | Non-cardiac defects

In our basic multivariable analyses (adjusting for mater-
nal age, race/ethnicity, and education), first trimester
births occurring in the higher quartile ranges (Q3-4)
were found to have moderately protective aPRs with
respect to a number of the non-cardiac defect groups
(19/31 [61%]) examined in this analysis. For instance,
the following 17 non-cardiac groupings had aPRs rang-
ing in magnitude from 0.80 to 0.89 in the Q3-4 group-
ings: anencephaly, microphthalmia, cataract, anotia/
microtia, choanal atresia or stenosis, cleft palate alone
(without cleft lip), pyloric stenosis, stenosis or atresia of
the small intestine, Hirschsprung disease, renal agenesis
or dysgenesis, reduction defects of the upper and lower
limbs, craniosynostosis, diaphragmatic hernia, gastro-
schisis, and trisomies 13 and 18 (Q2). Five defect group-
ings had aPRs that were even more protective (aPR
range: 0.60-0.79) in Q3-4: microcephaly (Q4 only),
anophthalmia, cataract, gastroschisis, and trisomy
18 (see Table 3a). A few significantly elevated aPRs in
the higher SS categories were noted for microcephaly
(Q2-3); and agenesis, aplasia, or hypoplasia of the lung
(Q3-4) (Table 3a).

3.2 | Cardiac defects

Among cardiac defects, we also observed protective esti-
mates when moving into the higher quartiles of SS activ-
ity for close to half of the cardiac defects examined (6/13
[46%]). For instance, four defects had aPRs in the (0.80-
0.89) magnitude range in Q3-4: transposition of the great
vessels, pulmonary valve atresia or stenosis, aortic valve
stenosis, and patent ductus arteriosus—three in the
greater aPR protective range of (0.60-0.79): ventricular
septal defect, atrial septal defect, and pulmonary valve
atresia or stenosis. Little to no change in estimates were
noted in the higher quartile ranges across the other
selected defects (Table 3Db).

3.3 | Year of conception adjustment

After additionally adjusting for year of conception across
these models, results were similar—with many of the
aPRs staying the same or moving closer to the null across
both the cardiac and non-cardiac defects examined. A
few exceptions would be anopthalmia, pyloric stenosis,
and transposition of the great vessels—where Q4 esti-
mates were notably more protective following the addi-
tional adjustment of year of conception (Tables 3a,b).

4 | DISCUSSION

To better understand the impact of the solar cycle on a
range of birth defects, we examined the association
between sunspot data from the National Oceanic and
Atmospheric Administration (NOAA) and a spectrum of
44 distinct birth defects groupings and found moderately
protective aPRs in a little over half of the case groups
examined in our quartiles of higher SS activity (19 non-
cardiac; 6 cardiac) and noted significantly elevated aPRs
among two defect groups (agenesis, aplasia, and hypopla-
sia of the lung (Q3-4) and microcephaly (Q2-3)). Follow-
ing an additional adjustment of year of conception across
our defect categories, many of the estimates were attenu-
ated (Tables 3a,b). To our knowledge, this is the first
study to examine solar activity in relation to such a broad
range of defects—while also controlling for important
maternal demographic factors and year of conception.

As our understanding of the associations between the
internal dynamics of our sun and adverse terrestrial
health events (including the occurrence of birth defects)
continues to evolve, some investigators speculate that
better forecasting models of incidence trends and a more
coherent understanding of disease etiology could lead to
better forecasting of disease specific screening, diagnosis,
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TABLE 2 Selected maternal and infant factors by total births

(Texas, 1999-2016).

Characteristic®

Mean sunspots (SS) during the first trimester”
Quartile 1: Q1, ref—minimum SS activity
Quartile 2: Q2, low to medium SS activity

Quartile 3: Q3, medium to high SS
activity
Quartile 4: Q4, maximum SS activity
Maternal age
10-19
20-24
25-29
30-34
35-39
>40
Missing
Maternal race/ethnicity
White non-Hispanic
Black non-Hispanic
Hispanic
Other non-Hispanic
Missing
Maternal education
<High school
High school
>High school
Missing
Year of conception
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

Births

(n = 6,652,309)

n %

1,638,668  24.6
1,556,962 234
1,584,571  23.8
1,872,108 28.1
836,314 12.6
1798,915 27.0
1,822,834 274
1414,771 21.3
641,269 9.6
138,203 2.1
3 0.0
2,343,018 35.2
747,596 11.2
3,236,239  48.7
325,453 4.9
3 0.0
1,819,347 274
1,875,343  28.2
2,919,430 439
38,189 0.6
233,303 3.5
340,344 5.1
346,821 5.2
353,856 53
361,759 54
363,409 5.5
367,699 5.5
375,868 5.7
393,053 5.9
362,269 5.5
392,972 5.9
375,002 5.6
369,635 5.6
365,963 5.5

(Continues)
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TABLE 2 (Continued)

Births
(n = 6,652,309)

Characteristic* n %
2012 372,278 5.6
2013 383,759 5.8
2014 389,734 5.9
2015 390,752 5.9
2016 113,833 1.7

*Exclusions include: multifetal births (n = 30,501,~5%), birth defects with
non-definitive diagnosis codes (n = 19,265,~3%), and births missing date of
conception information (n = 1402, <1%), or sunspot number (n = 2505,
<1%) (Note: sunspot data not available for April 2007 from NOAA).

PFirst trimester mean sunspots (calculated from one month pre-conception
through first three months of pregnancy): Q1 (0 to <24th percentile) = 7.53;
Q2 (25th-49th percentile) = 34.33; Q3 (50th-74th percentile) = 59.41; and
Q4 (75th-100th percentile) = 105.05; overall average sunspot numbers
across entire time period examined = 53.32; sunspot range = 0.68-147.13.

treatment and prevention (Hrushesky et al., 2011). Fur-
ther, while solar UV-R is a known mutagen (and using
sunscreen and avoiding over-exposure are important
messages for preventing skin cancer) (Dale Wilson
et al., 2012), there are instances where periodic exposure
is beneficial to human health (e.g., mediating natural
synthesis of vitamin D and endorphins in the skin)
(D'Orazio et al., 2013; Mead, 2008).

4.1 | Solar activity and biophysical
pathways of exposure

While all living organisms are influenced by solar activity,
how sunspot signals—responsible for solar magnetic
storms—induce changes in biophysical pathways remains
unclear. Recent speculation has included alterations in
UV-R, solar protons, heavy charged particles, geomagnetic
storm-induced gravitational field changes, fluctuations, and
resonance signals (Hrushesky et al., 2011). One particularly
interesting facet of recent research lies in the realm of cos-
mic ray impacts on the Earth and ionizing radiation. Dur-
ing periods of heightened solar activity, increasing
numbers of solar flares and coronal mass ejections are
known to cause increased ionization in the Earth's lower
ionosphere (D region) (Tsurutani et al., 2009). While ioniz-
ing radiation from astrophysical sources is dominated by
two secondary cosmic ray sources (i.e., muons and neu-
trons), how these particles work together during height-
ened periods of solar activity to penetrate the atmosphere
and exert genotoxic damage remains speculative (Overholt
et al., 2015). Although rare, muons are subatomic particles
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thought to be the highest ionizing radiation threat from
heightened solar events due to their high rate of penetra-
tion through the upper atmosphere and ability to reach sea
level and below (Marinho et al., 2014). Little is known,
however, about how muons interact with other forms of
cosmic ionizing radiation such as neutrons. One hypothesis
is that these two forms of ionizing radiation combine dur-
ing periods of heightened solar activity to produce effects
which are ‘additive’ and would account for more biological
damage than ionization alone would suggest (Overholt
et al., 2015). Another speculated mechanism is that follow-
ing these heightened solar events, increasing ionization of
the Earth's atmosphere is thought to deplete stratospheric
ozone and subsequently lead to increased levels of ultravio-
let B (UV-B) radiation reaching the Earth—known to be
especially hazardous to life (Melott & Thomas, 2011).

4.2 | Sunspot activity and fetal loss
Although contrary to previous research finding associa-
tions between higher levels of solar activity and increasing
birth defects, possible explanations for the seemingly pro-
tective impact of higher levels of SS activity and lower
prevalence of many birth defects examined in this analysis
may be related to the influence of increasing levels of solar
UV-R on fetal loss early in pregnancy. While not captured
in this analysis, other environmental epidemiological
investigations have found that an array of known environ-
mental toxicants associated with adverse birth outcomes
can often be missed due to the impact of these toxicants
on spontaneous abortions (SAs) (loss of a pregnancy
<20 weeks gestation) (Bakulski et al., 2019). In particular,
those toxicants with a high probability of toxicogenomic
responses are often also highly correlated with SAs
(Bakulski et al., 2019). With many SAs occurring before
women are aware of their pregnancies, a depleted number
of fetuses are thus left to be susceptible to later adverse
birth outcomes (Bakulski et al.,, 2019). With evidence
mounting with respect to the negative impacts of radiation
on adverse birth outcomes (Frangione et al., 2023), the
seemingly protective influence of increasing SS activity
may be an artifact of increasing SAs that occur following
conception during these periods of heightened SS activity.
Future studies in this topic area would benefit from the
inclusion of fetal deaths as part of their analysis.

4.3 | Radiation hormesis

Another alternative hypothesis lies within the realm of
radiation hormesis—the hypothesis that low levels of
radiation are beneficial and stimulate activation of repair

mechanisms within biological organisms
(Feinendegen, 2005). Although the subject of consider-
able debate and not currently accepted by the
United States National Research Council (Health Risks
from Exposure to Low Levels of Ionizing Radiation: BEIR
VII Phase 2|The National Academies Press, 2006), there
appears to be some evidence that low doses of ionizing
radiation may, in fact, have beneficial effects on living
beings (as seen from protective effects found in some cel-
lular [de Toledo et al., 2006], animal [Sakai et al., 2002],
and human studies [Nair-Shalliker et al., 2012]). A recent
Australian study, for instance, examining solar radiation
and DNA damage found that with increasing sun expo-
sure, the misrepair of DNA strand breaks decreased
(Nair-Shalliker et al., 2012). Given the limited evidence
to support this hypothesis, however, the linear no-
threshold model (LNT) (which relies on the postulate
that all ionizing radiation exposure is harmful, regardless
of dose) continues to be the dominant model most relied
upon by regulatory agencies for human radiation expo-
sure (Hall, 1998).

44 | Solar UV-R and blood pressure

An additional explanation for the apparent protective
impact of UV-R on birth defects may be understood in
light of recent research on solar UV-R and blood pres-
sure. Some recent evidence has pointed to associations
between solar UV-R and reduced blood pressure—known
to enhance nitric oxide release by mobilizing storage
forms in the skin and modulating the immune system
(Campbell & Soothill, 1993; Hart et al., 2011)—mediators
essential to the process of implantation and early placen-
tation with influences on the fetal genome (Lowell &
Davis, 2010; Norwitz, 2006; Velauthar et al., 2014). Fur-
ther, hypertension alone has been independently associ-
ated with an array of birth defects (Bellizzi et al., 2016;
van Gelder et al., 2015). While modern lifestyles—
particularly in the developed world—often coincide with
spending increasing amounts of time indoors and in
automobiles—where much of the natural UV-R (espe-
cially UV-B) is blocked (Almutawa et al., 2013), low
levels of daily sun exposure may, in fact, be beneficial—
not only in the context of decreasing blood pressure, but
also in the context of improving birth outcomes.

5 | STRENGTHS AND
LIMITATIONS

While strengths of this analysis include the utilization of
a large population-based study incorporating data from
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the TBDR (with the inclusion of clinically verified cases),
the DSHS Center for Health Statistics (incorporating vital
events across Texas), and NOAA (providing continual
monitoring of solar and space weather conditions—
including sunspots), this study is not without limitations.
Given the spectrum nature of this analysis and numerous
statistical associations tested for, we cannot rule out the
potential for chance findings. Further, given the ubiquity
and broadly defined scope of exposure (SS activity over
time), there are numerous avenues for exposure
misclassification—a few of which will be discussed in
more detail below, alongside some current speculated
mechanisms underlying these associations as they relate
to the occurrence of birth defects.

5.1 | Solar UV-R exposure
misclassification

As touched on above, in considering this ecological study
design, our use of SS exposure can only be considered a
proxy for individual UV and other cosmic exposures
experienced by our terrestrial population at large (i.e., the
ecological fallacy) (Mackenbach, 2000)—thus, we cannot
attribute any causal relationships to these findings. Fur-
ther, we utilized mean monthly exposures across the first
trimester broken down into quartiles where peak expo-
sures were not assessed. Future studies would benefit
from more accurate methods of assessing exposure—
accounting for daily exposure across the entire pregnancy
period.

Along these lines, individual exposure levels to differ-
ing types of solar ultraviolet (UV) radiation (UV-A
vs. UV-B) were also not captured in this study. While
both types of radiation are known to damage DNA, they
have different mechanisms of action. Solar UV-A radia-
tion, for instance, the predominant form of UV-R reach-
ing the Earth, is known to pass through glass (Duarte
et al., 2009) and penetrate as deep as the dermis in skin
(Guerra et al., 2023). UV-B, on the other hand (shorter in
wavelength and largely blocked by glass) penetrates less
well through the atmosphere—although is considered
more directly damaging to DNA when exposure does
occur (Guerra et al., 2023). As discussed in Section 4.1,
UV-B exposure penetrating the atmosphere may also be
more common during active SS periods—thus being
more problematic during solar maximums. Lastly, we
were unable to account for the amount of time spent out-
doors, type of clothing worn, or utilization of sunscreen
in our population—all of which may have had important
impacts on the amount of UV-R our population was
exposed to.

5.2 |
defects

UV-R, folate degradation, and birth

While previous in-vitro studies have shown that both
folate (and its synthetic derivative folic acid) are degraded
by both solar UV-A and UV-B radiation, only UV-A radi-
ation (as discussed above) is known to penetrate through
to dermal circulation (Guerra et al., 2023)—leaving folate
more vulnerable to degradation (Borradale et al., 2014).
Further, regarding folate status in particular (important
for the prevention of an array of birth defects
[Czeizel, 2004; Zhou et al., 2020]), recent research has
pointed to a potential interaction between the solar cycle
and MSR/MTHFR genotypes influencing embryo viabil-
ity (Lucock et al., 2012). Lucock et al. (2012), for instance,
hypothesized that there is a time specific sensitivity of
folate to solar emissions that could predispose specific
genotypes to pregnancy loss or developmentally origi-
nated disorders. Future studies aimed at better under-
standing not only frequency and type of UV-R exposure,
but also amounts of circulating folate and genotypic
interactions in the presence of these exposures could pro-
vide greater insight into the mechanisms underlying
these associations.

5.3 | Global moderators

Further, while solar activity is ubiquitous, variations in
UV intensity on a global scale occur due to a variety of
factors, including: differences in latitudes (UV rays are
less intense further away from the equator due to differ-
ences in the orientation and polarity of the Earth's mag-
netic field [Palmer et al., 2006]), chlorofluorocarbon
(CFC) pollution, cloud cover, aerosols, solar wind, Sun-
Earth distance, solar zenith, and altitude (Aceituno-
Madera et al., 2011; McKenzie et al., 2011; Sabburg
et al., 2001). Given that all study subjects included in this
analysis resided in Texas, the chance for misclassification
due to altitudinal and latitudinal residential differences,
in particular, is minimal. Future research would benefit
from the inclusion of more complex models accounting
for these varying global factors.

54 | Residual confounders

Lastly, we cannot rule out the potential for residual con-
founding by other factors such as maternal diabetes,
smoking, hypertension, body mass index (BMI), rural/
urban residence, and an array of other sociodemographic
and occupational factors that were not included in this
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analysis and may have had significant impacts on our
results.

6 | CONCLUSION

While still relatively new to the field of public health and
birth defects research, heliobiology may prove increas-
ingly important in the future. As solar radiation levels
are expected to increase in the coming years due to cli-
mate change and variations in atmospheric ozone
(Williamson et al., 2014), better understanding how solar
activity influences human health—alongside the mecha-
nisms underlying these changes—will prove to be
increasingly important. For the present analysis, we
examined 18 years of sunspot data (a proxy for solar
activity) and a spectrum of 44 birth defects in a large,
population-based study utilizing Texas data. Slightly over
half of the defects examined had protective aPR estimates
in the presence of increasing SS activity, while two defect
groupings included significant elevations. With the addi-
tional inclusion of year of conception across our models,
results were similar with the exception that a number of
the findings were attenuated. Given our overall limited
understanding of these solar-terrestrial relationships,
future work is needed to replicate and build upon these
findings to provide a more coherent picture of these com-
plex relationships.
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